

EV Vehicle Management: Smart Charging, Routing, and Energy Optimization in Campuses

S. Muthurajan, Kondala Rao. Parasa
Academy of Maritime Education and Training,
Aditya University

EV Vehicle Management: Smart Charging, Routing, and Energy Optimization in Campuses

¹S. Muthurajan, Assistant Professor, Department of Marine Engineering, Academy of Maritime Education and Training, Chennai, Tamil Nadu, India. smuthuraajan@gmail.com

²Kondala Rao. Parasa, Assistant Professor, Department of EEE, Aditya University, Surampale, Kakinada, Andhra Pradesh, India. chvr5816@gmail.com

Abstract

The growing demand for sustainable campus transportation systems has driven the adoption of electric vehicles (EVs) as a pivotal component in reducing carbon footprints and optimizing energy use in academic environments. This chapter explores the integration of EV fleets with smart charging systems, advanced routing algorithms, and renewable energy sources within campus settings. Key challenges related to energy optimization, demand response, and fleet management are addressed, with a particular focus on how renewable energy, including solar and wind, can be harnessed to power EV charging infrastructure. The integration of autonomous vehicles in campus transportation systems is also examined, highlighting their potential to enhance operational efficiency, safety, and fleet coordination. Policy frameworks, regulatory considerations, and financial incentives that support the implementation of renewable energy solutions for EV charging on campuses are discussed, emphasizing their importance in creating a sustainable and resilient campus energy ecosystem. The chapter provides a comprehensive overview of emerging technologies, strategies, and governance mechanisms that are shaping the future of EV management on campuses, positioning educational institutions as leaders in the transition to low-carbon transportation systems.

Keywords: Electric Vehicles, Smart Charging, Renewable Energy, Campus Sustainability, Autonomous Vehicles, Fleet Management.

Introduction

The adoption of electric vehicles (EVs) within educational institutions is becoming an increasingly vital strategy for promoting sustainability and reducing the environmental impact of campus transportation systems [1]. With universities and colleges striving to meet sustainability targets and contribute to the global push for carbon neutrality, EVs provide a sustainable alternative to traditional fossil fuel-powered vehicles [2]. As large, dense environments, campuses represent ideal settings for the integration of EV fleets, where the high volume of transportation needs [3], combined with the availability of renewable energy resources, offers unique opportunities for innovation [4]. Transitioning to electric mobility not only helps reduce greenhouse gas emissions but also supports a broader commitment to environmental stewardship, as universities and other educational institutions seek to model sustainable practices for future generations [5].

An essential component of this transition is the development of smart charging systems, which are designed to optimize the use of energy when charging EVs, reduce grid strain, and promote energy efficiency across campus infrastructures [6]. Smart charging systems can intelligently manage the flow of electricity to EVs based on real-time data, allowing for better synchronization with renewable energy sources like solar and wind [7]. This reduces reliance on non-renewable energy while ensuring that charging stations remain functional and efficient [8], even during peak demand periods. The integration of renewable energy into EV charging systems presents significant advantages [9], as it further aligns campus operations with sustainability goals and reduces the overall environmental impact of campus mobility [10].

Another crucial aspect of EV management within campus settings is routing and fleet optimization [11]. Campus EV fleets, whether used for shuttle services, maintenance, or delivery, require a high level of coordination to ensure that resources are efficiently utilized [12]. Advanced routing algorithms can help minimize energy consumption, reduce operational costs, and ensure that EVs are deployed where they are needed most [13]. By integrating artificial intelligence and machine learning, campuses can create dynamic, real-time schedules that account for fluctuations in traffic, weather, and battery levels [14]. These optimized routing systems can help improve service efficiency, reduce congestion, and ensure that vehicles are operating at maximum capacity, reducing the overall number of trips needed to serve the campus community [15].