

AI-Driven Risk Management and Compliance Strategies in Finance and E-Commerce

Kavitha A Karkera, Rajalakshmi Gurusamy
Nagarjuna Degree College, Sethu Institute of
Technology

AI-Driven Risk Management and Compliance Strategies in Finance and E-Commerce

¹Kavitha A Karkera, Associate Professor, Dept of MBA, Nagarjuna Degree College, Bengaluru, Karnataka State, India. kavitaashwin@gmail.com

²Rajalakshmi Gurusamy, Assistant Professor, Department of Information Techology, Sethu Institute of Technology, Virudhunagar, Tamilnadu, India. gurusamyrajalakshmi89@gmail.com

Abstract

The increasing complexity of digital financial and e-commerce ecosystems has introduced multifaceted risks that challenge traditional risk management and compliance frameworks. This chapter presents a comprehensive exploration of Artificial Intelligence (AI) technologies as strategic enablers for enhancing operational resilience, regulatory adherence, and predictive risk assessment. Machine learning, deep learning, natural language processing, and reinforcement learning models are examined for their roles in detecting anomalies, forecasting financial and transactional risks, and automating compliance monitoring. AI-driven solutions facilitate real-time threat identification, proactive mitigation of operational disruptions, and adaptive governance across distributed systems. Integration of AI with Governance, Risk, and Compliance (GRC) platforms ensures continuous regulatory alignment, supports automated audit trails, and strengthens decision-making under dynamic conditions. Case studies and analytical insights demonstrate how AI applications optimize credit risk scoring, fraud detection, supply chain vulnerability assessment, and policy compliance, providing organizations with strategic foresight in highly volatile digital environments. The chapter also addresses challenges related to data integrity, transparency, ethical considerations, and algorithmic accountability, emphasizing the importance of explainable AI in high-stakes operational contexts. This work contributes to the growing body of knowledge on intelligent risk management frameworks and highlights the transformative potential of AI in achieving resilient, efficient, and compliant financial and e-commerce operations.

Keywords: Artificial Intelligence, Risk Management, Compliance, Finance, E-Commerce, Predictive Analytics.

Introduction

The digitization of financial services and e-commerce platforms has profoundly reshaped the operational, regulatory, and technological landscape of global commerce [1]. Transactional volumes have increased exponentially, and customer interactions have become highly data-intensive, generating massive volumes of behavioral, financial, and operational data [2]. This growth introduces complex challenges that extend beyond traditional risk management approaches, which are often reactive, rule-based, and incapable of adapting to rapid changes in threat patterns [3]. Financial institutions and online marketplaces now confront risks spanning fraud, cyberattacks, regulatory non-compliance, operational failures, and reputational loss. These challenges necessitate intelligent, adaptive, and scalable solutions that can operate effectively

across diverse, distributed, and highly dynamic digital environments [4]. The inability to detect threats in real-time or to predict risk exposure can result in substantial financial losses, operational disruption, and erosion of consumer trust, highlighting the urgency for modernized risk management frameworks capable of addressing both anticipated and unforeseen vulnerabilities [5].

Artificial Intelligence (AI) has emerged as a transformative solution to these challenges by enabling predictive, adaptive, and automated risk assessment and compliance monitoring [6]. Machine learning algorithms analyze historical and real-time data to detect anomalies, identify emerging threats, and provide early warning signals for potential operational failures [7]. Deep learning architectures enhance detection capabilities by modeling complex, non-linear relationships across transactional datasets, behavioral sequences, and network interactions, uncovering subtle risk patterns that conventional statistical models often fail to identify [8]. Natural language processing (NLP) facilitates automated interpretation of regulatory guidelines, policy documents, and compliance standards, allowing organizations to maintain alignment with evolving legal frameworks without excessive manual effort [9]. Reinforcement learning supports the continuous optimization of risk mitigation strategies, dynamically adjusting operational responses to shifting environmental conditions. The integration of these AI technologies ensures that organizations can achieve robust, proactive, and scalable risk management across multiple domains, including credit evaluation, fraud detection, cybersecurity, and regulatory compliance [10].