

Artificial Intelligence Approaches for Fertilizer and Pesticide Recommendation Systems

R. Senthamizhselvi, A. Arivazhagan, R. Sundar
St. Joseph College of Engineering, Roever Engineering
College, Deemed to be University

Artificial Intelligence Approaches for Fertilizer and Pesticide Recommendation Systems

¹R. Senthamizh selvi, Associate Professor, Department of Chemistry, St. Joseph College of Engineering, Sriperumbudur – 602117 senthamizh1980@gmail.com

²A. Arivazhagan, Assistant Professor, Department of Biotechnology, Roever Engineering College Elambalur, Tamil Nadu – 621220. arivazhagan@roeverengg.edu.in

³R. Sundar, Associate Professor, Department of Marine Engineering, Academy of Maritime Education and Training, Deemed to be University, Chennai – 603112. sundar.r@ametuniv.ac.in

Abstract

The integration of Artificial Intelligence (AI) in agricultural systems has revolutionized the way fertilizers and pesticides are managed, offering precise, data-driven solutions that enhance productivity while promoting sustainability. This chapter explores the role of AI techniques, such as machine learning, deep learning, and hybrid models, in optimizing the application of fertilizers and pesticides. By leveraging real-time data from diverse sources—such as soil sensors, climate forecasts, satellite imagery, and pest detection systems—AI-driven recommendation models can provide tailored, context-specific guidance to farmers. These systems not only improve crop yields but also reduce resource wastage and minimize environmental impact. The chapter highlights key methodologies, including ensemble methods like Random Forests and Deep Reinforcement Learning (DRL), that enable adaptive, real-time decision-making. Furthermore, it examines the integration of AI with soil and crop simulation models, enhancing model accuracy and responsiveness. While significant progress has been made, challenges related to data quality, model interpretability, and scalability remain, especially in smallholder and developing regions. The chapter concludes by discussing future directions, emphasizing the need for further research to develop more sustainable, scalable, and user-friendly AI-based agricultural solutions.

Keywords: Artificial Intelligence, Fertilizer Management, Pesticide Optimization, Precision Agriculture, Machine Learning, Deep Reinforcement Learning.

Introduction

The agricultural industry faces unprecedented challenges in meeting the growing global demand for food while simultaneously minimizing the environmental impact of farming practices [1]. Fertilizers and pesticides, integral to modern agriculture, help to increase crop yields and protect against pests and diseases [2]. However, their overuse or misuse can lead to detrimental consequences such as soil degradation, water contamination, and the development of pesticide resistance [3]. As the world moves toward more sustainable agricultural practices, there is an increasing need for efficient systems that can optimize the application of these chemical inputs [4]. Artificial Intelligence (AI) offers a powerful tool to address this need, providing data-driven solutions that can enhance both productivity and environmental sustainability. AI-based recommendation systems for fertilizers and pesticides represent a paradigm shift in precision

agriculture, allowing for real-time, context-aware decisions that optimize resource use and minimize ecological harm [5].

182

AI-driven systems harness large-scale data from a variety of sources, including soil health sensors, weather data, satellite imagery, and pest monitoring systems, to generate tailored recommendations for fertilizer and pesticide applications [6]. These systems use machine learning algorithms to analyze complex relationships between soil conditions, climate variables, crop types, and pest dynamics, allowing for the creation of highly personalized and localized recommendations [7]. Unlike traditional farming methods, which often rely on fixed schedules or generalized guidelines, AI-based models can adjust dynamically to changing conditions, ensuring that fertilizers and pesticides are applied at the right time, in the right quantity, and in the right location [8]. This real-time decision-making capability significantly improves the efficiency of agricultural practices while reducing waste and minimizing negative environmental impacts [9, 10].

Machine learning techniques, such as supervised learning, regression models, and decision trees, have been successfully applied in the development of AI-based fertilizer and pesticide recommendation systems [11]. These models use historical data and environmental inputs to predict optimal fertilization and pesticide application strategies [12]. By learning from past outcomes and continuously refining their predictions based on new data, these systems provide highly accurate and adaptive recommendations [13]. Additionally, deep learning approaches, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs), enable AI systems to process complex datasets, such as high-resolution satellite imagery and time-series weather data, further enhancing their ability to predict and optimize farming practices [14]. These advanced models bring significant improvements over traditional methods by offering a deeper understanding of crop health, pest behaviors, and soil nutrient levels [15].