

Machine Learning Techniques for Soil Health Assessment and Crop Suitability Prediction

P. Mahalakshmi, Pradheeba P, P. Usha
Sethu Institute of Technology, Nehru College of
Engineering and Research Center, Institute of
Aeronautical Engineering

Machine Learning Techniques for Soil Health Assessment and Crop Suitability Prediction

¹P. Mahalakshmi, Associate Professor, Department of Electronics and Communication Engineering, Sethu Institute of Technology, Thoothukudi, Tamil Nadu – 626115, maha.lakshmijun26@gmail.com

²Pradheeba P, Assistant professor, Department of Computer Science Engineering, Nehru College of Engineering and Research Center, Pampady, Thirssur, Kerala -680588. prathi.cse15@gmail.com

³P. Usha, Assistant professor, Department of Computer Science Engineering (AI&ML), Institute of Aeronautical Engineering, Dundigal, Hyderabad – 500043. Papineni.usha@gmail.com

Abstract

The dynamic interplay between soil health and agricultural productivity is heavily influenced by various environmental and management factors, with soil properties undergoing temporal fluctuations that impact crop growth, nutrient availability, and overall sustainability. This chapter explores the integration of machine learning (ML) techniques in the assessment of soil health, focusing on the temporal dynamics of soil properties and their implications for crop suitability prediction. Advances in data-driven approaches, including time-series forecasting and remote sensing, offer significant improvements in understanding soil nutrient fluctuations, moisture variations, and microbial activity over time. By coupling climate, soil, and crop data, this work presents a holistic approach to predictive modeling, enabling more efficient and adaptive agricultural practices. The chapter highlights the importance of integrating spatio-temporal data with ML algorithms to forecast soil health trends, optimize resource management, and enhance drought resilience. Despite the challenges in data integration and model accuracy, the potential for ML to revolutionize soil health monitoring and decision-making in precision agriculture remains immense. Ultimately, this chapter aims to provide insights into future research directions and the application of AI-driven frameworks in achieving sustainable, data-informed soil and crop management strategies.

Keywords: Soil Health, Temporal Dynamics, Machine Learning, Crop Suitability, Remote Sensing, Predictive Modeling.

Introduction

Soil health is a fundamental determinant of agricultural productivity and environmental sustainability [1]. It governs essential processes such as nutrient cycling, water retention, and microbial activity, all of which directly influence crop growth, yield, and quality [2]. In the face of increasing global food demand and the growing challenges of climate change, it is crucial to adopt advanced techniques for assessing and managing soil health [3]. Traditional soil analysis methods, although effective, are often labor-intensive, time-consuming, and limited in their ability to capture the spatial and temporal variability of soil properties across large geographical areas [4].

These limitations underscore the need for innovative approaches that enable continuous, real-time monitoring of soil health at multiple scales [5].

Machine learning (ML) has emerged as a powerful tool in addressing these challenges, enabling more accurate, scalable, and efficient soil health assessments [6]. ML techniques, particularly those based on time-series data, can capture the complex, dynamic interactions among soil properties, climatic factors, and crop performance over time [7]. By integrating diverse datasets from remote sensing, climate modeling, and soil sensors, ML algorithms can provide valuable insights into soil nutrient dynamics, moisture fluctuations, and microbial activity [8]. These techniques allow for the development of predictive models that can anticipate soil conditions, enabling farmers and land managers to make more informed decisions about soil management, crop selection, and resource allocation [9.10].

One of the primary advantages of ML in soil health assessment is its ability to handle large volumes of data from heterogeneous sources [11]. Soil health is influenced by a variety of factors, including pH, electrical conductivity, organic carbon content, and microbial communities [12]. The temporal variability of these properties adds another layer of complexity, as soil health is not static and changes over time due to environmental conditions, management practices, and crop growth cycles [13]. ML models that integrate time-series forecasting with remote sensing and environmental data can account for these fluctuations, providing dynamic [14], real-time predictions that reflect the evolving state of soil health. Such predictive capabilities are crucial for developing adaptive management strategies in agriculture, allowing for timely interventions that improve soil fertility and prevent degradation [15].